If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50-4.9t^2=0
a = -4.9; b = 0; c = +50;
Δ = b2-4ac
Δ = 02-4·(-4.9)·50
Δ = 980
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{980}=\sqrt{4*245}=\sqrt{4}*\sqrt{245}=2\sqrt{245}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{245}}{2*-4.9}=\frac{0-2\sqrt{245}}{-9.8} =-\frac{2\sqrt{245}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{245}}{2*-4.9}=\frac{0+2\sqrt{245}}{-9.8} =\frac{2\sqrt{245}}{-9.8} $
| (-2x-4)/5+8/5=7/3x+9 | | -2/3x+1/2=3/4 | | 4/5x-6=10 | | -36-12x=51-9x | | -6n-4=14 | | b+43=41 | | b+54=54 | | b+53=54 | | -7+4(7x-6)=13 | | 18=3k-1 | | 35-b=70 | | 9x-1=10-5 | | 7/10p=392 | | 201=64-y | | 4×+2y=60 | | a+52=53 | | -d/5-1=6 | | -9x+13+11x+17=4 | | 1.56*2.3=n | | 2/3=-1/3p | | 1.56×2.3=n | | -9t-4=24 | | 11x+1=45x+15 | | Y=-0.01x^2+.9x | | 10x+6-8x=-2 | | a/3-8=11 | | 7x+1=120 | | -3(2x+4)=-9x | | t+6=19 | | x+3+5x=6x+3 | | 2(4-x)=12x-3 | | 8x+16=2x-8 |